资源类型

期刊论文 103

年份

2024 1

2023 15

2022 4

2021 8

2020 9

2019 8

2018 5

2017 2

2016 6

2015 11

2014 2

2013 1

2012 3

2011 9

2010 1

2009 3

2008 4

2007 6

2006 1

2002 1

展开 ︾

关键词

燃耗 2

G蛋白偶联受体 1

IHNI-1 1

MCNP 1

ORIGEN2 1

n-Si 1

东亚季风 1

主动控制 1

二氧化钛 1

二阶矩模型 1

人工智能 1

光伏/光电化学器件 1

光阳极 1

功率流 1

功耗 1

区域气候模式 1

医院中子照射器I型堆 1

厄尔尼诺-南方涛动 1

压缩感知;耦合映像格子(CML);DNA运算;半张量积 1

展开 ︾

检索范围:

排序: 展示方式:

Isogeometric analysis of coupled thermo-elastodynamic problems under cyclic thermal shock

Asghar AMANI DASHLEJEH

《结构与土木工程前沿(英文)》 2019年 第13卷 第2期   页码 397-405 doi: 10.1007/s11709-018-0473-7

摘要: The isogeometric analysis (IGA) method was extended for the solution of the coupled thermo-elastodynamic equations. The dimensionless formulation was accepted in discretization of the uncoupled and coupled thermoelasticity equations and the Generalized Newmark method was used in the time integration procedure. First, the performance of the proposed method was verified against a two-dimensional benchmark example subjected to constant thermal shock with available exact analytical solutions. Then a two-dimensional half-space benchmark example under thermal shock was solved. Finally, cyclic thermal shock (CTS) loading was applied on the half-space problem. The results dedicated that IGA can be used as a suitable approach in the analysis of the general thermomechanical problems.

关键词: isogeometric analysis     coupled thermo-elastodynamic     dynamic analysis     generalized newmark     cyclic thermal shock    

An extended thermo-mechanically coupled algorithm for simulation of superelasticity and shape memory

S. HASHEMI,H. AHMADIAN,S. MOHAMMADI

《结构与土木工程前沿(英文)》 2015年 第9卷 第4期   页码 466-477 doi: 10.1007/s11709-015-0300-3

摘要: Thermo-mechanical coupling in shape memory alloys is a very complicated phenomenon. The heat generation/absorption during forward/reverse transformation can lead to temperature-dependent variation of its mechanical behavior in the forms of superelasticity and shape memory effect. However, unlike the usual assumption, slow loading rate cannot guarantee an isothermal process. A two-dimensional thermo-mechanically coupled algorithm is proposed based on the original model of Lagoudas to efficiently model both superelasticity and shape memory effects and the influence of various strain rates, aspect ratios and boundary conditions. To implement the coupled model into a finite element code, a numerical staggered algorithm is employed. A number of simulations are performed to verify the proposed approach with available experimental and numerical data and to assess its efficiency in solving complex SMA problems.

关键词: shape memory alloy     thermo-mechanical coupling     superplasticity     shape memory effect    

基于有限变形理论的齿轮楔横轧制坯热力耦合模拟

应富强,潘孝勇,李敏

《中国工程科学》 2007年 第9卷 第7期   页码 47-52

摘要:

楔横轧齿轮轧制成形是一个全新的课题,在轧制过程中轧件的变形、温度场及力能参数都有待研究。将楔横轧技术与齿轮范成加工原理相结合,设计了楔横轧齿轮轧制的模具,给出了楔横轧齿轮轧制成形热力耦合本构模型,并在SuperForm平台对轧制成形过程进行了有限元模拟,获得了轧件在成形过程中的变形规律、温度场分布及力能参数变化等数据,详细分析了数值模拟结果,为进一步研究齿轮楔横轧制坯提供参考。

关键词: 楔横轧     齿轮     热力耦合     有限元    

Finite element modeling of thermo-active diaphragm walls

Yi RUI, Mei YIN

《结构与土木工程前沿(英文)》 2020年 第14卷 第3期   页码 646-663 doi: 10.1007/s11709-020-0584-9

摘要: There are two major challenges faced by modern society: energy security, and lowering carbon dioxide gas emissions. Thermo-active diaphragm walls have a large potential to remedy one of these problems, since they are a renewable energy technology that uses underground infrastructure as a heat exchange medium. However, extensive research is required to determine the effects of cyclic heating and cooling on their geotechnical and structural performance. In this paper, a series of detailed finite element analyses are carried out to capture the fully coupled thermo-hydro-mechanical response of the ground and diaphragm wall. It is demonstrated that the thermal operation of the diaphragm wall causes changes in soil temperature, thermal expansion/shrinkage of pore water, and total stress applied on the diaphragm wall. These, in turn, cause displacements of the diaphragm wall and variations of the bending moments. However, these effects on the performance of diaphragm wall are not significant. The thermally induced bending strain is mainly governed by the temperature differential and uneven thermal expansion/shrinkage across the wall.

关键词: thermo-active diaphragm wall     finite element analysis     thermo-hydro-mechanical coupling     ground source heat pump    

Free vibration analysis of functionally graded porous curved nanobeams on elastic foundation in hygro–thermo–magnetic

《结构与土木工程前沿(英文)》 2023年 第17卷 第4期   页码 584-605 doi: 10.1007/s11709-023-0916-7

摘要: Herein, a two-node beam element enriched based on the Lagrange and Hermite interpolation function is proposed to solve the governing equation of a functionally graded porous (FGP) curved nanobeam on an elastic foundation in a hygro–thermo–magnetic environment. The material properties of curved nanobeams change continuously along the thickness via a power-law distribution, and the porosity distributions are described by an uneven porosity distribution. The effects of magnetic fields, temperature, and moisture on the curved nanobeam are assumed to result in axial loads and not affect the mechanical properties of the material. The equilibrium equations of the curved nanobeam are derived using Hamilton’s principle based on various beam theories, including the classical theory, first-order shear deformation theory, and higher-order shear deformation theory, and the nonlocal elasticity theory. The accuracy of the proposed method is verified by comparing the results obtained with those of previous reliable studies. Additionally, the effects of different parameters on the free vibration behavior of the FGP curved nanobeams are investigated comprehensively.

关键词: functionally graded porous material     curved nanobeam     hygro–thermo–magnetic     enriched finite element method    

Simulation and experimental improvement on a small-scale Stirling thermo-acoustic engine

Mao CHEN,Yonglin JU

《能源前沿(英文)》 2016年 第10卷 第1期   页码 37-45 doi: 10.1007/s11708-015-0390-6

摘要: Compared with the traditional engines, the thermo-acoustic engines are relatively new and can act as the linear compressors for refrigerators. Many institutes have shown great interest in this kind of machine for its absence of moving mechanical part. In this paper, the influence of the dimensions of the main parts of the small-scale Stirling thermo-acoustic engine was numerically simulated using a computer code called DeltaEC. The resonator and the resonator cavity were found to be the most convenient and effective in improving the performance of the engine. Based on the numerical simulation, a small-scale Stirling thermo-acoustic engine were constructed and experimentally investigated. Currently, with a resonator length of only 1 m, the working frequency of the engine was decreased to 90 Hz and the onset temperature difference was decreased to 198.2 K.

关键词: thermo-acoustic Stirling engine     small-scale     simulation     experiment    

Thermo-elastic extended meshfree method for fracture without crack tip enrichment

A. ASADPOUR

《结构与土木工程前沿(英文)》 2015年 第9卷 第4期   页码 441-447 doi: 10.1007/s11709-015-0319-5

摘要: This is the first manuscript presenting an extended meshfree method for thermo- elastic fracture which does not exploit a crack tip enrichment. The crack is modeled by partition of unity enrichment of the displacement and temperature field. Only a step function is employed that facilitates the implementation. To ensure that crack tip is at the correct position, a Lagrange multiplier field ahead of the crack tip is introduced along a line. The Lagrange multiplier nodal parameters are discretised with the available meshfree functions. Two benchmark examples illustrate the efficiency of the method.

关键词: meshfree method     thermo-elasticity    

Thermo-mechanical simulation of frost heave in saturated soils

《结构与土木工程前沿(英文)》   页码 1400-1412 doi: 10.1007/s11709-023-0990-x

摘要: Roads are exposed to various degradation mechanisms during their lifetime. The pavement deterioration caused by the surrounding environment is particularly severe in winter when the humidity and subfreezing temperatures prevail. Frost heave-induced damage is one of the winter-related pavement deterioration. It occurs when the porewater in the soil is exposed to freezing temperatures. The study of frost heave requires conducting a multiphysics analysis, considering the thermal, mechanical, and hydraulic fields. This paper presents the use of a coupled thermo-mechanical approach to simulate frost heave in saturated soils. A function predicting porosity evolution is implemented to couple the thermal and mechanical field analyses. This function indirectly considers the effect of the water seepage inside the soil. Different frost heave scenarios with uniform and non-uniform boundary conditions are considered to demonstrate the capabilities of the method. The results of the simulations indicate that the thermo-mechanical model captures various processes involved in the frost heave phenomenon, such as water fusion, porosity variation, cryogenic suction force generation, and soil expansion. The characteristics and consequences of each process are determined and discussed separately. Furthermore, the results show that non-uniform thermal boundaries and presence of a culvert inside the soil result in uneven ground surface deformations.

关键词: frost heave     multiphysics analysis     thermo-mechanical approach     saturated soils    

Nano thermo-hydrodynamics method for investigating cell membrane fluidity

YANG Yang, LIU Jing

《能源前沿(英文)》 2008年 第2卷 第2期   页码 121-128 doi: 10.1007/s11708-008-0033-2

摘要: As a barrier to compartmentalize cells, membranes form the interface between a cell and its surroundings. The essential function of a membrane is to maintain a relatively stable environment in the cell, exchange substances selectively and transfer energy and information continually from the outside. It is intriguing that above the phase transition temperature, the membrane lipid molecule will have three modes–lateral diffusion, rotational movement and flip-flop activity. These thermodynamic processes are vital to cell existence, growth, division, differentiation and are also responsible for hundreds of thousands of phenomena in life. Previously, species transport across the membrane was interpreted mainly from a phenomenological view using a lumped system model. Therefore, detailed flow processes occurred in the membrane domain and clues related to life mechanism were not sufficiently tackled. Such important issues can be clarified by modeling nano scale thermal hydrodynamics over the gap space of a cell membrane. Previously observed complex membrane behaviors will be shown in this paper and explained by the thermally induced fluidic convections inside the membrane. A correlation between nano scale hydrodynamics, non-equilibrium thermodynamics and cell membrane activities is set up. The disclosed mechanisms are expected to provide a new viewpoint on the interaction between intracellular and extracellular processes through the membrane.

关键词: responsible     phenomenological     phenomena     modes–lateral diffusion     differentiation    

Effect of graphene and its derivatives on thermo-mechanical properties of phase change materials and

《能源前沿(英文)》 2022年 第16卷 第2期   页码 150-186 doi: 10.1007/s11708-021-0795-3

摘要: Phase change materials (PCMs) play a leading role in overcoming the growing need of advanced thermal management for the storage and release of thermal energy which is to be used for different solar applications. However, the effectiveness of PCMs is greatly affected by their poor thermal conductivity. Therefore, in the present review the progress made in deploying the graphene (Gr) in PCMs in the last decade for providing the solution to the aforementioned inadequacy is presented and discussed in detail. Gr and its derivatives ((Gr oxide (GO), Gr aerogel (GA) and Gr nanoplatelets (GNPs)) based PCMs can improve the thermal conductivity and shape stability, which may be attributed to the extra ordinary thermo-physical properties of Gr. Moreover, it is expected from this review that the advantages and disadvantages of using Gr nanoparticles provide a deep insight and help the researchers in finding out the exact basic properties and finally the applications of Gr can be enhanced.

关键词: phase change materials (PCMs)     graphene     thermal conductivity     characterization    

Thermo-economic analysis of a direct supercritical CO electric power generation system using geothermal

《能源前沿(英文)》 2022年 第16卷 第2期   页码 246-262 doi: 10.1007/s11708-021-0749-9

摘要: A comprehensive thermo-economic model combining a geothermal heat mining system and a direct supercritical CO2 turbine expansion electric power generation system was proposed in this paper. Assisted by this integrated model, thermo-economic and optimization analyses for the key design parameters of the whole system including the geothermal well pattern and operational conditions were performed to obtain a minimal levelized cost of electricity (LCOE). Specifically, in geothermal heat extraction simulation, an integrated wellbore-reservoir system model (T2Well/ECO2N) was used to generate a database for creating a fast, predictive, and compatible geothermal heat mining model by employing a response surface methodology. A parametric study was conducted to demonstrate the impact of turbine discharge pressure, injection and production well distance, CO2 injection flowrate, CO2 injection temperature, and monitored production well bottom pressure on LCOE, system thermal efficiency, and capital cost. It was found that for a 100 MWe power plant, a minimal LCOE of $0.177/kWh was achieved for a 20-year steady operation without considering CO2 sequestration credit. In addition, when CO2 sequestration credit is $1.00/t, an LCOE breakeven point compared to a conventional geothermal power plant is achieved and a breakpoint for generating electric power generation at no cost was achieved for a sequestration credit of $2.05/t.

关键词: geothermal heat mining     supercritical CO2     power generation     thermo-economic analysis     optimization    

agriculture biomass and disposable medical face mask waste for green fuel production: recent advances and thermo-kinetic

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1141-1161 doi: 10.1007/s11705-022-2230-7

摘要: The Association of Southeast Asian Nations is blessed with agricultural resources, and with the growing population, it will continue to prosper, which follows the abundance of agricultural biomass. Lignocellulosic biomass attracted researchers’ interest in extracting bio-oil from these wastes. However, the resulting bio-oil has low heating values and undesirable physical properties. Hence, co-pyrolysis with plastic or polymer wastes is adopted to improve the yield and quality of the bio-oil. Furthermore, with the spread of the novel coronavirus, the surge of single-use plastic waste such as disposable medical face mask, can potentially set back the previous plastic waste reduction measures. Therefore, studies of existing technologies and techniques are referred in exploring the potential of disposable medical face mask waste as a candidate for co-pyrolysis with biomass. Process parameters, utilisation of catalysts and technologies are key factors in improving and optimising the process to achieve commercial standard of liquid fuel. Catalytic co-pyrolysis involves a series of complex mechanisms, which cannot be explained using simple iso-conversional models. Hence, advanced conversional models are introduced, followed by the evolutionary models and predictive models, which can solve the non-linear catalytic co-pyrolysis reaction kinetics. The outlook and challenges for the topic are discussed in detail.

关键词: biomass     COVID-19 waste     catalyst     pyrolysis     kinetics    

Uncertainty assessment in hydro-mechanical-coupled analysis of saturated porous medium applying fuzzy

Farhoud KALATEH, Farideh HOSSEINEJAD

《结构与土木工程前沿(英文)》 2020年 第14卷 第2期   页码 387-410 doi: 10.1007/s11709-019-0601-z

摘要: The purpose of the present study was to develop a fuzzy finite element method, for uncertainty quantification of saturated soil properties on dynamic response of porous media, and also to discrete the coupled dynamic equations known as - hydro-mechanical equations. Input parameters included fuzzy numbers of Poisson’s ratio, Young’s modulus, and permeability coefficient as uncertain material of soil properties. Triangular membership functions were applied to obtain the intervals of input parameters in five membership grades, followed up by a minute examination of the effects of input parameters uncertainty on dynamic behavior of porous media. Calculations were for the optimized combinations of upper and lower bounds of input parameters to reveal soil response including displacement and pore water pressure via fuzzy numbers. Fuzzy analysis procedure was verified, and several numerical examples were analyzed by the developed method, including a dynamic analysis of elastic soil column and elastic foundation under ramp loading. Results indicated that the range of calculated displacements and pore pressure were dependent upon the number of fuzzy parameters and uncertainty of parameters within equations. Moreover, it was revealed that for the input variations looser sands were more sensitive than dense ones.

关键词: fuzzy finite element method     saturated soil     hydro-mechanical coupled equations     coupled analysis     uncertainty analysis    

Thermal fluid-structure interaction and coupled thermal-stress analysis in a cable stayed bridge exposed

Nazim Abdul NARIMAN

《结构与土木工程前沿(英文)》 2018年 第12卷 第4期   页码 609-628 doi: 10.1007/s11709-018-0452-z

摘要: In this paper, thermal fluid structure-interaction (TFSI) and coupled thermal-stress analysis are utilized to identify the effects of transient and steady-state heat-transfer on the vortex induced vibration and fatigue of a segmental bridge deck due to fire incidents. Numerical simulations of TFSI models of the deck are dedicated to calculate the lift and drag forces in addition to determining the lock-in regions once using fluid-structure interaction (FSI) models and another using TFSI models. Vorticity and thermal convection fields of three fire scenarios are simulated and analyzed. Simiu and Scanlan benchmark is used to validate the TFSI models, where a good agreement was manifested between the two results. Extended finite element method (XFEM) is adopted to create 3D models of the cable stayed bridge to simulate the fatigue of the deck considering three fire scenarios. Choi and Shin benchmark is used to validate the damaged models of the deck in which a good coincide was seen between them. The results revealed that TFSI models and coupled thermal-stress models are significant in detecting earlier vortex induced vibration and lock-in regions in addition to predicting damages and fatigue of the deck due to fire incidents.

关键词: fire scenario     transient heat transfer     TFSI model     coupled thermal-stress     XFEM    

Vehicle-bridge coupled vibrations in different types of cable stayed bridges

Lingbo WANG,Peiwen JIANG,Zhentao HUI,Yinping MA,Kai LIU,Xin KANG

《结构与土木工程前沿(英文)》 2016年 第10卷 第1期   页码 81-92 doi: 10.1007/s11709-015-0306-x

摘要: Numerical analyses of the coupled vibrations of vehicle-bridge system and the effects of different types of cable stayed bridges on the coupled vibration responses have been presented in this paper using ANSYS. The bridge model and vehicle model were independently built which have no internal relationship in the ANSYS. The vehicle-bridge coupled vibration relationship was obtained by using the APDL program which subsequently imposed on the vehicle and bridge models during the numerical analysis. The proposed model was validated through a field measurements and literature data. The judging method, possibility, and criterion of the vehicle-bridge resonance (coupled vibrations) of cable stayed bridges (both the floating system and half floating system) under traffic flows were presented. The results indicated that the interval time between vehicles is the main influence factor on the resonance excitation frequency under the condition of equally spaced traffic flows. Compared to other types of cable stayed bridges, the floating bridge system has relatively high possibility to cause vehicle-bridge resonance.

关键词: vehicle-bridge coupled vibration     cable stayed bridge     resonances of vehicle-bridge system    

标题 作者 时间 类型 操作

Isogeometric analysis of coupled thermo-elastodynamic problems under cyclic thermal shock

Asghar AMANI DASHLEJEH

期刊论文

An extended thermo-mechanically coupled algorithm for simulation of superelasticity and shape memory

S. HASHEMI,H. AHMADIAN,S. MOHAMMADI

期刊论文

基于有限变形理论的齿轮楔横轧制坯热力耦合模拟

应富强,潘孝勇,李敏

期刊论文

Finite element modeling of thermo-active diaphragm walls

Yi RUI, Mei YIN

期刊论文

Free vibration analysis of functionally graded porous curved nanobeams on elastic foundation in hygro–thermo–magnetic

期刊论文

Simulation and experimental improvement on a small-scale Stirling thermo-acoustic engine

Mao CHEN,Yonglin JU

期刊论文

Thermo-elastic extended meshfree method for fracture without crack tip enrichment

A. ASADPOUR

期刊论文

Thermo-mechanical simulation of frost heave in saturated soils

期刊论文

Nano thermo-hydrodynamics method for investigating cell membrane fluidity

YANG Yang, LIU Jing

期刊论文

Effect of graphene and its derivatives on thermo-mechanical properties of phase change materials and

期刊论文

Thermo-economic analysis of a direct supercritical CO electric power generation system using geothermal

期刊论文

agriculture biomass and disposable medical face mask waste for green fuel production: recent advances and thermo-kinetic

期刊论文

Uncertainty assessment in hydro-mechanical-coupled analysis of saturated porous medium applying fuzzy

Farhoud KALATEH, Farideh HOSSEINEJAD

期刊论文

Thermal fluid-structure interaction and coupled thermal-stress analysis in a cable stayed bridge exposed

Nazim Abdul NARIMAN

期刊论文

Vehicle-bridge coupled vibrations in different types of cable stayed bridges

Lingbo WANG,Peiwen JIANG,Zhentao HUI,Yinping MA,Kai LIU,Xin KANG

期刊论文